Stamicarbon’s Plant Assessment that evaluates the opportunities to increase capacity and/or decrease operational costs and/or decrease emissions
When it comes to recognizing opportunities related to plant performance, a plant assessment is the essential starting point. It is only through a comprehensive analysis that Stamicarbon’s engineers can determine the status of the plant and give advice on improvements.

Stamicarbon’s plant assessment, the ADVANCE CONSULT™ Process is of great value to your plant when you want to:

• Transform an operational bottleneck into a sustainable overall solution
• Analyze the plant status to determine the possibilities available to advance your plant

To operate your plant at a sustainable and consistently high level, Stamicarbon provides expert advice on innovative processes and optimal equipment conditions for achieving high-quality outputs in the long term. Stamicarbon evaluates the feasibility of further improving plant performance, production and energy consumption by troubleshooting and optimizing process conditions.

Having analyzed the data, a bespoke model is put together offering an extensive overview of your plant’s performance. This lays the foundation for the formation and implementation of creative improvements.

Objectives:
• Increase capacity
• Decrease emissions
• Decrease operational costs

The process includes:
• Determining the current material balances
• Identifying sections operating at maximum load
• Identifying equipment which constantly operates close to design limits, needs replacement, or essential upgrades in the future
• Providing recommendations to rectify areas of concern (for example, LP steam venting)
• Advising how to improve your plant’s performance including using proven debottlenecking concepts to take full advantage of all design margins so as to produce more urea and reduce emission figures.
Figures of Mass Balance | Urea plant

Normal operation

<table>
<thead>
<tr>
<th>PROCESS STREAM</th>
<th>CO₂</th>
<th>NH₃</th>
<th>reactor outlet</th>
<th>Stripper outlet</th>
<th>Final product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea crystals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82279,0</td>
</tr>
<tr>
<td>Urea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biuret</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>kg/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>kg/h</td>
<td></td>
<td></td>
<td></td>
<td>250,0</td>
</tr>
</tbody>
</table>

| Total | kg/h | 64245,3 | 47200,7 | 274610,3 | 155928,5 | 83333,3 |

Temperature
- °C
 - 40,0
 - 30,0
 - 182,4
 - 173,0
 - 60,0

Pressure
- bar
 - 1,01
 - 17,7
 - 141,2
 - 144,2
 - 1,01

Density
- kg/m³
 - 1,624
 - 595,9
 - 975,3
 - 1127
 - 731,1

Volume 1
- m³/h
 - 39568,1
 - 79,2
 - 281,6
 - 138,3
 - 114,0

Volume 2
- Nm³/h
 - 34593,3
 - -
 - -
 - -
 - -

Viscosity
- mPa.s
 - 0,016
 - 0,128
 - 0,720
 - 0,905
 - -

Molecular weight
- kg/kmol
 - 41,6
 - 17,0
 - 26,3
 - 32,0
 - 59,8

Specific heat
- kJ[kg.°C]
 - 0,906
 - 4,894
 - 5,361
 - 4,988
 - 1,758

Compres. factor
- -
 - 0,994
 - -
 - -
 - -

Cp/Cv
- -
 - 1,292
 - -
 - -
 - -

Thermal conduct.
- W/m.°K
 - 0,019
 - 0,476
 - 0,452
 - 0,846
 - 1,291

Percentages (PPM where appropriate)

<table>
<thead>
<tr>
<th>Urea crystals</th>
<th>% by</th>
<th>mol</th>
<th>weight</th>
<th>weight</th>
<th>weight</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>98,7</td>
</tr>
<tr>
<td>Urea</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53,7</td>
</tr>
<tr>
<td>Biuret</td>
<td>%</td>
<td>91,3</td>
<td>-</td>
<td>32,8</td>
<td>2205 ppm</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>%</td>
<td>73</td>
<td>1049 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₃</td>
<td>%</td>
<td>7,3</td>
<td>99,5</td>
<td>31,2</td>
<td>8,6</td>
<td>25 ppm</td>
</tr>
<tr>
<td>H₂O</td>
<td>%</td>
<td>2781 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>%</td>
<td>1,1</td>
<td>100 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>%</td>
<td>-</td>
<td>100 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>%</td>
<td>-</td>
<td>100 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>%</td>
<td>-</td>
<td>100 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3000 ppm</td>
</tr>
</tbody>
</table>

Example of a Mass Balance Report
Example of a tailor-made process flow diagram