# Agronomic and environmental trends and developments in urea use

Gerard Velthof

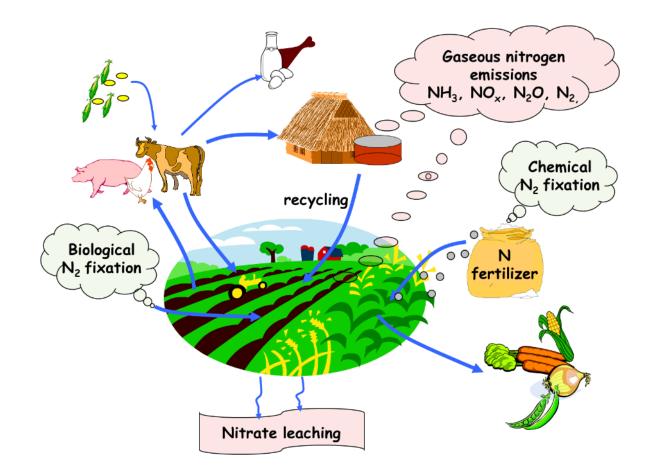






#### Contents

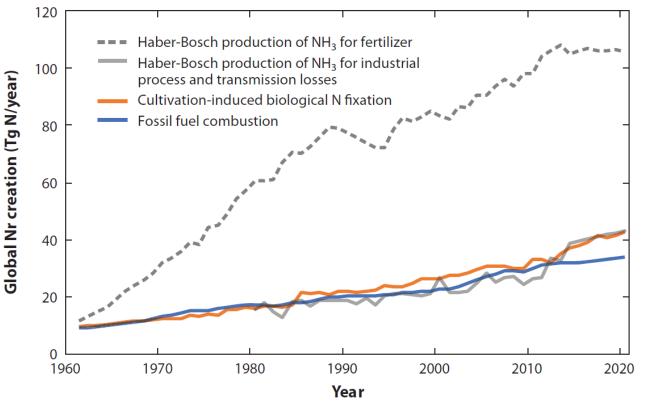
- Trends and projections of nitrogen fertilizer use
- Nitrogen losses from fertilizers applied to soils
- Measures to decrease nitrogen losses and increase nitrogen use efficiency




#### Trends and projections of nitrogen fertilizer use



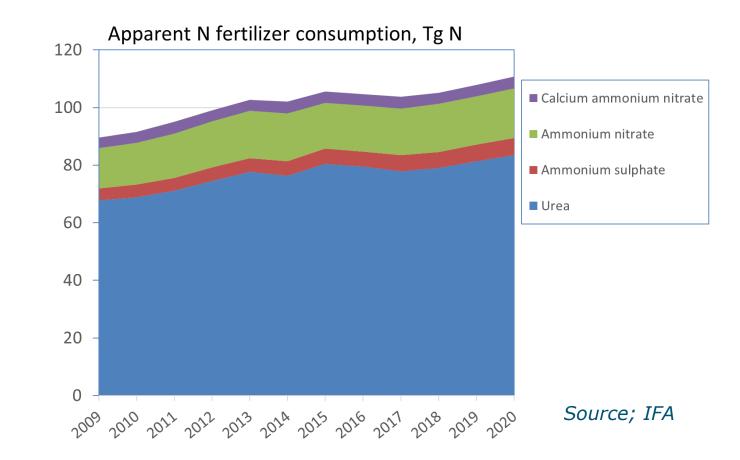



#### Nitrogen cycle in agriculture





## Production of new reactive nitrogen (Nr)

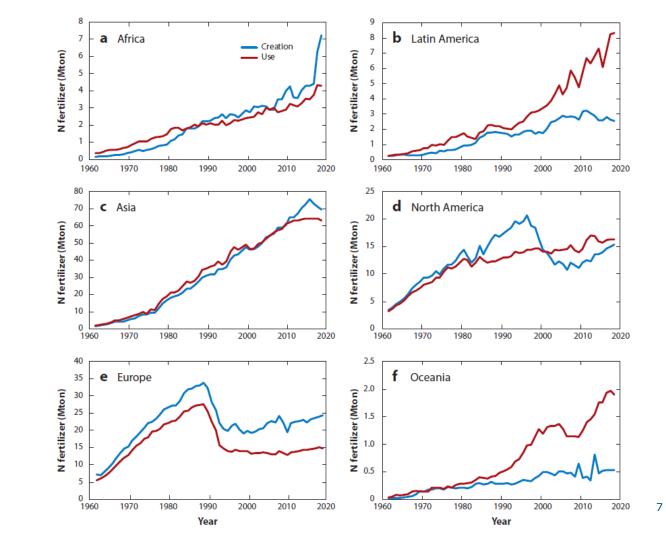

- \* Fertilizer production
- \* Industrial processes
- \* Biological N fixation
- \* Fossil fuel combustion



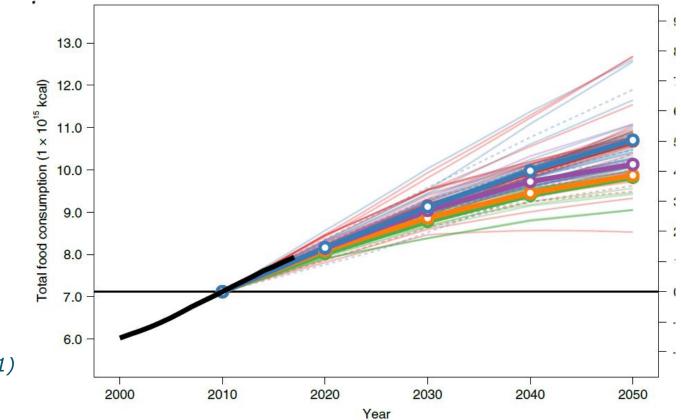


Galloway et al. (2021) 5

#### Global nitrogen fertilizer use







#### N fertilizer production and use

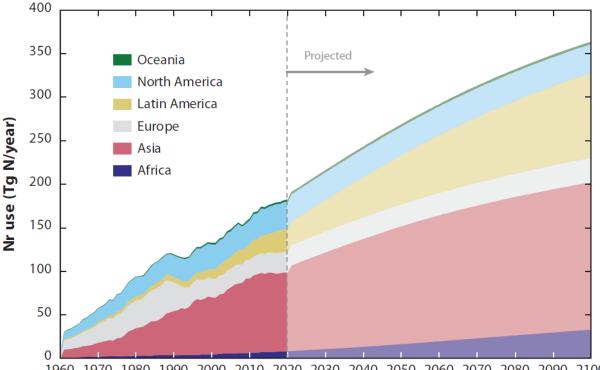
Galloway et al. (2021)





#### Projections of food consumption 2010–2050




Van Dijk et al. (2021)



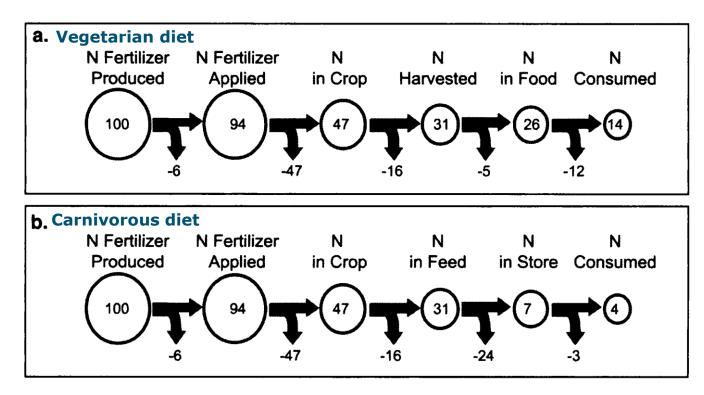
## Future trends of reactive nitrogen use

Galloway et al. (2021)





1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

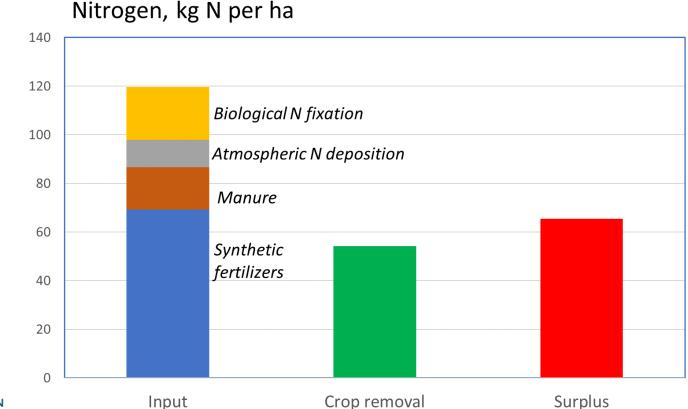

Year

#### Nitrogen losses from fertilizers applied to soils





#### Do we use nitrogen fertilizer efficiently?




Only 4-14% of the produced N fertilizer ends on the plate of the consumer



Galloway et al. (2002)

#### Average global nitrogen budget of cropland



FAOSTAT



### Recycling of N in manure

Synthetic fertilizer use: 123 Tg N

- Manure production: 128 Tg N
  - From which
    - 27 Tg N applied to soils
    - 90 Tg N excreted during grazing





#### Main nitrogen losses from agricultural soils

| N loss                    | Compound                        | Environmental effect         |  |  |
|---------------------------|---------------------------------|------------------------------|--|--|
| Ammonia emission          | NH <sub>3</sub>                 | Biodiversity                 |  |  |
|                           |                                 | Soil acidification           |  |  |
|                           |                                 | Air quality; fine particles  |  |  |
| Nitrate/nitrogen leaching | $NO_3^-$ , $NH_4^+$ , organic N | Drinking water quality       |  |  |
|                           |                                 | Eutrophication surface water |  |  |
| Nitrous oxide emission    | N <sub>2</sub> O                | Greenhouse gas               |  |  |
|                           |                                 | Destruction ozone layer      |  |  |
| Nitrogen oxide emission   | NOx                             | Biodiversity                 |  |  |
|                           |                                 | Soil acidification           |  |  |
| Dinitrogen emission       | N <sub>2</sub>                  | Harmless                     |  |  |



## Ammonia loss from applied urea worldwide

| Large risk on<br>ammonia emission            | Continent N loss as NH <sub>3</sub> |      |        |           |
|----------------------------------------------|-------------------------------------|------|--------|-----------|
| from urea fertilizers                        |                                     | %    |        |           |
|                                              |                                     | Mean | Median | Range     |
|                                              | Asia                                |      |        |           |
| urease                                       | East Asia                           | 15.9 | 13.3   | 1.7-48.0  |
| $CO(NH_2)_2 + H_2O \rightarrow CO_2 + 2NH_3$ | South Asia                          | 30.7 | 21.9   | 3.0-56.7  |
|                                              | Southeast Asia                      | 16.1 | 14.5   | 14.4–19.5 |
|                                              | Australasia                         | 16   | 18.5   | 2.0-30.0  |
|                                              | Europe                              | 13   | 10.6   | 0.9-29.8  |
|                                              | North America                       | 17.5 | 15.3   | 0.6-64.0  |
|                                              | South America                       | 14.2 | 13.3   | 1.7–31.8  |
|                                              | Average                             | 17.6 | 15.3   | 0.9-64.0  |



Pan et al. (2016)

Measures to decrease nitrogen losses and increase nitrogen use efficiency





#### Increase nitrogen use efficiency of fertilizers

#### 4R Nutrient Stewardship

- Right fertilizer source
- Right rate
- Right place
- Right time

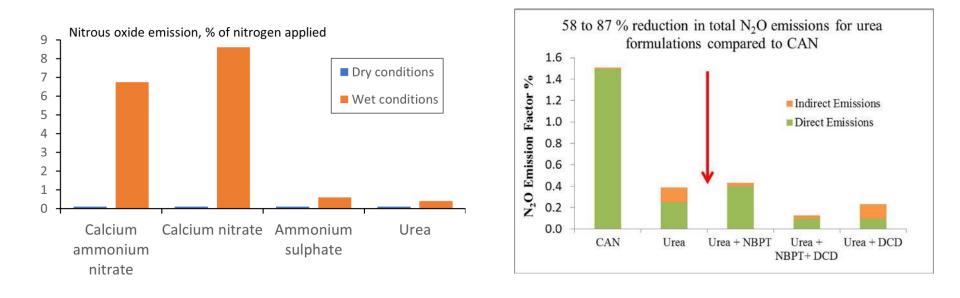
Right fertilizer source

> Right rate





### Right fertilizer source: N fertilizer type


Urea based fertilizers versus nitrate fertilizers:

- Ammonia emission: urea >> nitrate
- Nitrous oxide emission:
  - Wet conditions in grasslands: nitrate > urea
  - Arable soil and dry conditions: urea  $\geq$  nitrate
- Nitrate leaching: dependent on total input





#### Nitrous oxide conditions from grasslands



#### Netherlands (Velthof et al., 1997)

Ireland (Harty et al., 2016)



## Right fertilizer source: enhanced efficiency urea

- High enhanced efficiency urea fertilizers reduce ammonia losses
  - Urease inhibitors: 54%
  - Mixing with amendments (zeolite, pyrite, organic acids): 35%
  - Controlled release urea: 68%

- Controlled release urea on maize
  - 25% reduction of nitrous oxide emission
  - 27% reduction of nitrogen leaching
  - 5% increase of yield







#### Right rate

Fertilizer application rate based on nitrogen demand of the crop and the nitrogen supply from manure, organic fertilizers and soil

- Precision fertilization become increasingly important
  - Rapid soil and crop tests
  - Remote sensing, GIS and GPS
  - Internet based fertilization tools
  - Use of weather data and projections
  - Crop growth models





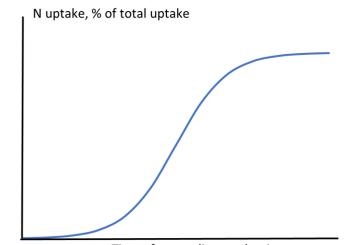


#### Right place

Incorporation in the soil reduces ammonia emission from urea:

- Incorporation or injection (55% reduction)
- Irrigation after urea application (35% reduction)

Pan et al. (2016)


Use of large granular urea in paddy rice may also decrease ammonia emission if urea penetrates in the soil







Apply N fertilizer just before or during growing period of the crop



Time after seeding or planting

 Urea: avoid application at moments of high risk of ammonia emission (dry and windy)



#### Conclusions

- Urea is the most used fertilizer on a global scale
- Global food demand will increase → need of chemical fertilizers will also increase
- Large part of applied nitrogen fertilizers is lost by gaseous emissions and leaching
  - $\rightarrow$  High risk on ammonia losses from urea (15 30% of N applied)
- 4R nutrient management strategy to decrease nitrogen losses and increase nitrogen use efficiency: Right source, rate, place, and time

 $\rightarrow$  Losses from urea can be strongly decreased (up to 70%) by urease inhibitors, coatings and direct incorporation in the soil



## Thank you!



