

# RECONNECT SYMPOSIUM 2022

KNOWLEDGE • OPTIMIZATION • INNOVATION





# Operational Experiences with the Ultra-low Energy Plant Design

Co-presenter: Wei Peng (Jiujiang XLX, China)

Presenters: Rahul Patil (Stamicarbon)

Mark Wagemans (Stamicarbon)

18 May 2022

Jaarbeurs, Utrecht





#### Content

- Introduction and background
- Ultra-low energy plants in operation and under construction
- Process description
- Operation experiences and key performance parameters
- Considerations for pool reactor design
- Operational experiences of pool reactor
- Conclusions





## Introduction and background

- 1.1 The Ultra-Low Energy (ULE) design has been launched in 'Stamicarbon symposium 2012'
  - OPEX: Drastic reduction in steam consumption from 870 kg/ton in traditional Launch melt pool condenser process (former Urea2000plus<sup>™</sup>) process to 567 kg/ton (23 bara, 330 °C) for ULE
  - CAPEX: Equivalent CAPEX as in traditional Launch melt pool condenser process.





# Introduction and background

- 1.2 Main elements of the Ultra-Low Energy<sup>™</sup> (ULE) design in operation and in construction;
  - CO<sub>2</sub> stripping process
  - Pool condensation
  - Limited high-pressure equipment's
    - Only 2 pieces (pool reactor and stripper),
  - Process-process heat exchange between 'synthesis' and 'medium pressure section'





# Ultra-Low Energy plants in operation and under construction

#### Jiujiang XinLianXin Fertilizer Co. Ltd (XLX)

• Synthesis: **Pool reactor + Stripper** 

Capacity: 2334 mtpd

Project phase: <u>In operation since Feb. 2021</u>

#### **Hubei Sanning Chemical Industrial Co. Ltd.**

• Synthesis: Pool reactor + Stripper

Capacity: 2334 mtpd

Project phase: <u>In operation since April 2021</u>







Two Ultra-Low Energy plants in operation since beginning 2021





# Ultra-Low Energy plants in operation and under construction

#### Xinxiang XinLianXin Fertilizer Co. Ltd (XLX)

• Synthesis: Pool reactor + Stripper

Capacity: 2334 mtpd

Project phase: under construction

Start-up expected: 2023

#### **Gemlik Gubre, Turkey**

Synthesis: Pool reactor + Stripper

Capacity: 1640 mtpd

Project phase: under construction

Start-up expected: 2023

#### **Confidential client, China**

Synthesis: Pool reactor + Stripper

Capacity: 2 x 2334 mtpd (two units)

Project phase: in engineering phase

Start-up expected: 2024

in total 6 Ultra-Low Energy (ULE) plants are licensed

2 plants in operation





### **Process description**

Energy flow diagram of traditional process launch melt pool condenser process (former urea 2000plusTM)

The "N = 2" process







## **Process description**

Energy flow diagram in Ultra-Low Energy design







# Process description "XLX / Sanning Plant Design"





### **Ultra-Low Energy Design Highlights**







# Typical layout of synthesis and medium pressure (MP) recirculation section







# Operational experiences and key performance parameters

# Simulation of operational window and start-up procedures with the Stami Digital Process Simulator:

- To get deeper understanding of the dynamics
- Train the operators for Ultra-Low Energy design.

#### **Main observations:**

- Relatively more stable synthesis and low-pressure operation due to "dual bundle" in synthesis.
- Operating correctly the Medium pressure section is the key element for maximizing the energy gains.







# Operational experiences and key performance parameters

# In Feb. 2021, Jiujiang XLX Ultra-Low Energy plant started-up

- The startup of the plant went very smooth without any issues.
- Initially operated at turndown capacity, the capacity increased to about 100% within a week.

#### **Main observation from operations:**

- Relatively simpler and stable operation of the plant.
- Lower-energy consumption
- Milder stripper conditions due lower steam side pressures.
  - Provides a longer life-time of the stripper
  - Lower biuret formation at stripper





# Operational experiences and key performance parameters

| Key performance parameters (based on Jiujiang XLX performance) |                                                  | Units                    | Expected values during design phase | Actual plant performance during the performance test. (average 5 days, XLX Jiujiang) |
|----------------------------------------------------------------|--------------------------------------------------|--------------------------|-------------------------------------|--------------------------------------------------------------------------------------|
| Production capacity                                            |                                                  | tons/day                 | 2334                                | 2387                                                                                 |
| Cooling water                                                  |                                                  | tons/ton <sub>urea</sub> | 61 (∆T = 10 °C)                     | 61 (ΔT = < 10 ∘C)                                                                    |
| High pressure Steam                                            | Extraction steam 23 bara, 330<br>•C (equivalent) | kg/ton <sub>urea</sub>   | 577                                 | 567                                                                                  |
| Product quality                                                | Total nitrogen                                   | wt%                      | 46.5                                | 46.6                                                                                 |
|                                                                | Biuret                                           | wt%                      | 0.85                                | < 0.80                                                                               |







- Dual bundle is integrated in pool reactor
- Design allows corrosive media on shell side and tube side
- Tube sheet and distribution channel are built inside the vessel
- Much thinner tube sheet compared to a conventional pool reactor or pool condenser
- Superior resistant properties of Safurex<sup>®</sup> Infinity steel against corrosion steel fully utilized







Conventional pool reactor or pool condenser

Ultra-Low Energy pool reactor





- All internal components of pool reactor are made from Safurex<sup>®</sup>
   Infinity steel
- Standard practice for tube-to-tube sheet weld like stripper
- Conceptual lay-out of pool reactor









- Internal parts are accessible through manhole by opening internal covers
- Special sealing system on internal covers
- Piping elbows:
  - Bended pipes
  - Segments







Profile for change in pressure

Blue is the lowest value



Relative fluid velocity profile

Blue is lowest value

- Design by rules as per code
- Finite Element Analysis for internal components
- Computational Fluid Dynamics for medium pressure outlet flow





### Operational experiences of pool reactor

- Two grass-root plants in China in operation since beginning 2021
- Plants are running stable
- Plant operational staff trained during the pre-commissioning period of the plant
- Risk based inspection program advised for first plant shutdown
- One grass-root plants in China and one in Turkey in manufacturing phase







# Operational experiences of pool reactor

First manufactured pool reactor with dual bundle ready for transport





#### **Conclusions**

- Two grass-root Ultra-Low Energy<sup>TM</sup> plants in China are successfully in operation since beginning 2021
- Actual steam consumption is 567 kg/ton urea and meets the targeted energy savings
- Cooling water consumption is 61 kg/ton urea meets initial requirement
- Lower biuret in the final product compared to traditional process
- Milder stripper operating condition, resulting in longer lifetime
- The Ultra-Low Energy<sup>™</sup> process design is fully optimized and requires two synthesis equipment only, for plant capacity up to 2500 MTPD
- Mechanical design of pool reactor is validated by stable operation
- Design fully employs the superior resistant properties of Safurex<sup>®</sup> Infinity steel against corrosion
- Internal parts like tubes and distribution box are easily accessible for maintenance and inspection





# **Statement Mr Weipeng**





# What is your most important benefit of ULE?

- 1. Lower Steam consumption
- 2. Lower cooling water consumption
- 3. Milder stripper operation / longer stripper life time
- 4. Lower Biuret
- 5. Operational flexibility







# Thank you!



